A numerical study of variable depth KdV equations and generalizations of Camassa-Holm-like equations

نویسندگان

  • Marc Duruflé
  • Samer Israwi
چکیده

In this paper we study numerically the KdV-top equation and compare it with the Boussinesq equations over uneven bottom. We use here a finite-difference scheme that conserves a discrete energy for the fully discrete scheme. We also compare this approach with the discontinuous Galerkin method. For the equations obtained in the case of stronger nonlinearities and related to the Camassa-Holm equation, we find several finite difference schemes that conserve a discrete energy for the fully discrete scheme. Because of its accuracy for the conservation of energy, our numerical scheme is also of interest even in the simple case of flat bottoms. We compare this approach with the discontinuous Galerkin method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Time Fractional Modifed Camassa-Holm and Degasperis-Procesi Equations by Using the Haar Wavelet Iteration Method

The Haar wavelet collocation with iteration technique is applied for solving a class of time-fractional physical equations. The approximate solutions obtained by two dimensional Haar wavelet with iteration technique are compared with those obtained by analytical methods such as Adomian decomposition method (ADM) and variational iteration method (VIM). The results show that the present scheme is...

متن کامل

Conformal and geometric properties of the Camassa-Holm hierarchy

Integrable equations with second order Lax pair like KdV and CamassaHolm (CH) exhibit interesting conformal properties and can be written in terms of the so-called conformal invariants (Schwarz form). These properties for the CH hierarchy are discussed in this contribution. The squared eigenfunctions of the spectral problem, associated to the Camassa-Holm equation represent a complete basis of ...

متن کامل

Conformal Properties and Bäcklund Transform for the Associated Camassa-Holm Equation

Integrable equations exhibit interesting conformal properties and can be written in terms of the so-called conformal invariants. The most basic and important example is the KdV equation and the corresponding Schwarz-KdV equation. Other examples, including the Camassa-Holm equation and the associated Camassa-Holm equation are investigated in this paper. It is shown that the Bäcklund transform is...

متن کامل

Modulation of Camassa–Holm equation and reciprocal transformations

We derive the modulation equations or Whitham equations for the Camassa– Holm (CH) equation. We show that the modulation equations are hyperbolic and admit bi-Hamiltonian structure. Furthermore they are connected by a reciprocal transformation to the modulation equations of the first negative flow of the Korteweg de Vries (KdV) equation. The reciprocal transformation is generated by the Casimir...

متن کامل

Numerical study of a multiscale expansion of KdV and Camassa-Holm equation

Abstract. We study numerically solutions to the Korteweg-de Vries and Camassa-Holm equation close to the breakup of the corresponding solution to the dispersionless equation. The solutions are compared with the properly rescaled numerical solution to a fourth order ordinary differential equation, the second member of the Painlevé I hierarchy. It is shown that this solution gives a valid asympto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 236  شماره 

صفحات  -

تاریخ انتشار 2012